
WhitePaper

BotStream

Epicode Design Team

16th May, 2022

Unit # 2201A, 22nd Floor, World Trade Centre, Rajajinagar, Bangalore - 560055
CIN: U72900KA2020PTC131771 corporate@epicode.in



1 Introduction 2

1.1 Primary Opensource Dependencies 2
1.1.1 NATS 2
1.1.2 SQLite 2
1.1.3 Freeswitch 2
1.1.4 Kubernetes 2

2 BotStream Architecture 3

2.1 IraCluster 4
2.2 IraTDB 5

2.2.1 IraTDB Architecture 6

3 Scalability using Application Load Balancing 7
3.1 Outbound Traffic 7
3.2 Inbound Traffic 8

4 Conclusion 8

1



1 Introduction

BotStream is a bidirectional voice streamer that interfaces telephony services with

conversational voice AI applications. It includes an API Dialer, Call recording, Trunk

manager, QOS monitor and CPA. It supports both Inbound and outbound voice traffic

and can integrate with PSTN or any PBX over E1 or SIP protocol while communicating

with the conversational AI application over WebSockets.

BotStream comprises one or more telephony switches, front ended by a SIP proxy for

load balancing. This allows BotStream to scale horizontally as the load increases. The

BotStream is built on Epicode’s IraCluster platform.

1.1 Primary Opensource Dependencies

1.1.1 NATS

The IraCluster uses NATS for all high-speed inter-process communication. NATS must be

installed within the Kubernetes cluster. The high speed messaging between the

telephony switches and the VoiceAI engines is enabled via NATS platform.

1.1.2 SQLite

IraCluster uses SQLite library to implement the distributed SQL embedded in-memory

transient private database. Any change made to one copy of the db is replicated instantly

in every copy of the database.

1.1.3 Freeswitch

The SIP and Media is handled using Freeswitch Telephony Platform, which can manage

very high call count in each instance. Botstreams uses multiple instances of Freeswitch in

a single installation to achieve horizontal scalability.

1.1.4 Kubernetes

Kubernetes has component level service discovery, redundancy, load balancing and

orchestration features, upon which IraCluster implements application layer service

discovery, redundancy and load balancing.

2

https://nats.io/


2 BotStream Architecture

The VoiceAI engines communicate with BotStream in two different ways. NATS for

sending requests and receiving events. Web Socket for sending and receiving raw audio

data. The BotStream deals with all the VOIP communication with telephony trunk

providers.

This architecture has no theoretical limits when it comes to scalability. It can be scaled

both vertically and horizontally depending on the requirements. This is made possible by

employing a combination of mature technologies. The biggest challenge to scalability is

the state synchronization across multiple instances of applications that must behave like

a swarm, a group with a single mind. None of the traditional databases or in-memory

databases provide the speed necessary to synchronize state, since they are more

3



interested in providing persistence and ACID transactions, neither of which are important

for a transient database, where data changes many times in a second.

All interactions with BotStream, IraCluster and IraTDB will be through NATS messaging.

2.1 IraCluster

As the reader may be aware, Kubernetes cluster is a collection of containers that are

managed or orchestrated by the Kubernetes layer. However, there is a need for a higher

level of orchestration for stateful applications to communicate with each other. IraCluster

is one such layer to seamlessly integrate multiple applications to work together towards

a common goal while providing redundancy and high availability.

IraCluster provides:

1. Tracking of all containers that belong to a distributed application instance

2. Provide instant and secure communication between all such containers.

3. Manage floating licensing of all the components that require licensing.

4. Provide a super-fast and powerful distributed in-memory private transient SQL

database.

5. IraCluster heavily depends on mature open source products to achieve maximum

reusability and high resiliency, and also high acceptability thanks to various

connectivity and language options.

Each service within IraCluster must be aware of the existence of other services it needs

to interact with. It is achieved via IraCluster service discovery powered by the NATS

platform. One can run multiple IraClusters within a single Kubernetes cluster by using

different IraCluster names. The IraCluster is made possible by a bunch of federated

services running on independent containers. Even components running outside the

kubernetes cluster can join IraCluster using NATS.

4



2.2 IraTDB

A global variable is an extremely convenient way to store, access, manipulate transient

data. It is very fast, very private and data goes away when the application shuts down.

Same concept can be extended to a full fledged relational database when in-memory

SQLite is used within an application.

However, in distributed applications or high availability applications, it becomes

impossible to retain the same functionality. The storage gets pushed out to an external

in-memory database which may be standalone or distributed. It won’t be as fast as an

embedded database where data resides in heap memory. And it won’t be private since

other applications can access the data provided they have database admin privileges. It

is impossible to keep the data inaccessible/immutable outside of the application while

using any external database.

IraTDB is a transient real time embedded database which is a global variable with SQL

query engine, which is also distributed. It is secured at database level by RSA keys. Even

read and write is separately controlled by keys. Since IraTDB is embedded into the

application storing only the database application uses, it is also serverless.

Applications that can’t directly link or embed the C++ implementation, can communicate

with iratdbot which is a standalone application that accepts NATS commands to open

and operate IraTDB. IraTDB uses SQL for all the database operations.

5



2.2.1 IraTDB Architecture

IraTDB makes use of the fact that one can create multiple in-memory SQLite databases in

each application. Each application can have full, read-only and none permission on

various databases. The permission is decided by whether the consuming application has

the keys to unlock the replicated data.

The databases will replicate into every copy of the applications that subscribe to those

databases. For example, in the above figure DB1 will exist in every copy of App A and

App B, and DB3 will exist in App A and App C, and DB4 will exist only in copies of App C.

Each database in the figure is a SQLite memory database. Green means read/write, violet

means read-only and red means private to that application copies. Other applications

can’t get it even if they subscribe to it.

6



Traditionally, this kind of synchronization is achieved by storing the transient data in a

centralized location in an in-memory database. This would usually create a single point of

failure, and require far more complex design to achieve redundancy and load balancing.

Not to forget, the network latency and the delay caused by mutually exclusive locking of

the data would make pull-type synchronization quite in-efficient. Here the applications

that modify transient data are responsible for updating the central location. And the

applications that need the latest copy of transient data must pull it from the central

location.

To solve this problem, a different approach was considered using the IraCluster

framework. An application can create a named database within the process, and changes

to it are published to a NATS subject. Any application that opens that named database

will subscribe to that subject. This database is essentially located in the heap memory of

the process. When any db table is modified (insert/update/delete), the changes will also

be replicated asynchronously to every instance of all the applications in IraCluster that

are subscribed to that database. These replications are handled by the IraTDB layer, and

are invisible to the process. Here the applications that modify transient data are

responsible for updating only local data within the process. The applications that need

the latest copy of transient data will always find it within the process. Contrast this with

the scenario in the previous paragraph. Since the processes always work with the copy

they already have within, the performance improvement is phenomenal.

3 Scalability using Application Load Balancing

Uniform load distribution across all the instances is the key to achieving scalability in

distributed telephony applications. We have been able to achieve 2500 simultaneous

calls in a single 16 core server, and multiple such instances can exist in a single cluster, as

long as network bandwidth is sufficient. We recommend a 10Gbps network or more.

3.1 Outbound Traffic

In distributed dialers, load balancing cannot be achieved by using a traditional network

balancer. That is because the load in a dialer system is outcome based. If you dial out 100

calls by sending dial requests via a network balancer sitting over 4 instances of

BotStream, it is possible to dial 25 calls from each BotStream. However, only 30 of the

7



calls may connect to a customer, and those connected calls won’t be uniformly

distributed across 4 instances. The distribution will be skewed and simply out of control,

some taking on too much load, and some running idle.

By using the IraTDB powered by IraCluster, multiple instances of BotStream are always

aware of how many calls are running in each instance. Instead of using network load

balancer, the BotStream uses NATS queuing to accept the request in any one of the

instances. After that the request is forwarded to the BotStream with the least load. This

ensures that every BotStream has almost the same amount of load. New BotStream

instances can be added during production and they will get into action instantly, taking

on all the new requests until the load matches the older servers. Similarly, BotStreams

can be taken out by marking one of them to be inactive until all the ongoing calls are

completed, after which it can be shut down.

3.2 Inbound Traffic

The inbound calls are SIP/RTP traffic, which uses a stateful protocol. A network load

balancer is again useless. The installation must have the ability to distribute while

considering the actual load on each BotStream instance. Epicode’s BotProxy has instant

access to the load data, and can direct the incoming calls to the instance with least traffic

thus achieving uniform load distribution.

There is no need to use a network load balancer in BotStream installations.

4 Conclusion

BotStream, Epicode’s Flagship product under the category “ Conversational AI Enablers”

has been specifically designed and developed to address the unique requirements of

VoiceAI applications. The competing products in the market are very generic in nature

and they do not provide the flexibility that VoiceAI application partners expect. For

example, BotStream supports an unlimited licensing model, wherein, partners need not

have to request for additional licenses whenever they need to increase the traffic load

thereby avoiding bureaucratic delays; resulting in revenue loss. BotStream allows

partners to launch any number of additional VoiceBots as long as they have the CPU

resources and SIP trunk channels to handle the additional load.

8


